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Abstract We have developed methods and identified problems associated with the analysis of data generated by
high-density, oligonuceotide gene expression arrays. Our methods are aimed at accounting for many of the sources of
variation that make it difficult, at times, to realize consistent results. We present here descriptions of some of these
methods and how they impact the analysis of oligonucleotide gene expression array data. We will discuss the process
of recognizing the “spots” (or features) on the Affymetrix GeneChipT probe arrays, correcting for background and
intensity gradients in the resulting images, scaling/normalizing an array to allow array-to-array comparisons, monitoring
probe performance with respect to hybridization efficiency, and assessing whether a gene is present or differentially
expressed. Examples from the analyses of gene expression validation data are presented to contrast the different
methods applied to these types of data. J. Cell. Biochem. 80:192–202, 2000. © 2000 Wiley-Liss, Inc.

The use of microarray technologies to moni-
tor gene expression in model organisms, cell
lines, and human tissues has become an impor-
tant part of biological research over the last
several years [Wodicka et al., 1997; Der et al.,
1998; Alon et al., 1999]. Teasing apart bio-
chemical pathways, identifying genes respon-
sible for a particular phenotype, and assessing
the effect of a drug compound on the expression
levels of any number of genes have all bene-
fited from expression array technology. While
many of these early successes clearly demon-
strate the importance of this technology, the
experiments have centered on profiling simple
model organisms or laboratory cell lines. Gene
expression experiments performed at Roche
Bioscience (RBS) have exhibited a more com-
plicated variation structure (with respect to
the expression intensities) when profiling more
complex samples, such as human and murine
tissue samples. The more complicated varia-
tion structure is most probably due to the ge-

netic and environmental heterogeneity of these
more complex samples.

Given this more complicated variation struc-
ture, we found it useful to enhance the methods
used to analyze the GeneChip probe array data
to account for as much of the technology vari-
ation possible. While we have found that the
methods used to analyze expression data pro-
vided by the GeneChip software often yield
high-quality results, the false positive and
false negative gene presence/differential ex-
pression call rates, we realized in a portion of
replicate human and murine GeneChip expres-
sion experiments, could be improved through
the development of our own methods to analyze
expression array data. Given the scarcity of
many tissue samples and the small size of
many of the mouse tissue samples, the number
of hybridizations that can be done for any given
experiment is often less than optimal. The
small number of array hybridizations for many
of our experiments (e.g., having only one or two
samples per time point, which makes it diffi-
cult, if not impossible, to estimate the within-
time-point biological variation), while useful
when looking at one or two genes, is problem-
atic when looking at thousands of genes simul-
taneously, and really demands developing
more sophisticated algorithms to further re-
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duce the signal variation within and between
arrays. Furthermore, a portion of the arrays we
have analyzed had noticeable signal anoma-
lies, which included intensity gradients (bright
edges and fluorescing streaks), glue smears
(broad fluorescing strokes resulting from the
chip packaging process), and dark spots (re-
gions where the signal is artificially low). Fig-
ure 1 illustrates some of these problems. We
have found that the normalization and back-
ground correction methods currently available
to analyze probe array data can be enhanced to
better account for such problems, and that
many of the underlying assumptions on which
these methods depend do not hold in a signifi-
cant percentage of the experiments we have
analyzed. Finally, we have found it useful to
supplement the gene detection and differential
expression detection methods employed by the
GeneChip software with our own methods, to
make these results easier to interpret at the
biological level and to provide a more quanti-
tative measure of significance on whether a
gene is present or differentially expressed.

We will discuss in more general terms some
of the methods and tools we have developed to
facilitate the analysis of GeneChip data; meth-
ods aimed at reducing variation at a variety of

sources, variation that serves only to obscure
the very biological variation we are actually
interested in detecting. We will begin with a
brief overview of the oligonucleotide expression
array technology developed by Affymetrix, and
then proceed to describe each of the low-level
analysis methods we have found useful in an-
alyzing gene expression array data.

OVERVIEW OF THE OLIGONUCLEOTIDE
EXPRESSION ARRAY TECHNOLOGY

There are several publications discussing the
fundamentals of the oligonuceotide expression
array technology [see, e.g., Lockhart, 1996, or
the supplement to Nature Genetics, Volume
21, January, 1999]. However, for our purposes
in this article, it will be useful to review some of
the elements of the probe array analysis pro-
vided by the GeneChipt software. As described
by Lockhart et al. [1996], genes are repre-
sented on a probe array by some number of
sequences (typically 20) of a particular length
(typically 25 nucleotides) that uniquely iden-
tify the genes and, ostensibly, have relatively
uniform hybridization characteristics, with re-
spect to the experimental protocol used in
these experiments. Each oligonucleotide, or
probe, is synthesized in a small region (the
length and width of the features are either 50 mm
for the low-density arrays or 24 mm for the
high-density arrays), which can contain any-
where from 106 to 107 copies of a given probe.
Designed to correspond to the perfect match
(PM) oligonucleotide pulled from a gene se-
quence (or EST), is a mismatch (MM) oligonu-
cleotide in which, typically, the center base
position of the oligo has been mutated; the MM
probes give some estimate of the random hy-
bridization and cross hybridization signals, al-
though, as we can see in Figure 2, there is a
nonlinear functional relationship between the
paired PM and MM probe intensities.

Ostensibly, this functional relationship
stems from the hybridization kinetics of the
different probe sequences and from nonspecific
RNA hybridizations. Figure 2 illustrates a hy-
pothetical tiling pattern of probes pulled from a
gene sequence, the length of the probes, and
how each PM probe is paired with a corre-
sponding MM probe, and the intensity differ-
ential between PM and MM features when a
gene is present in a sample (i.e., high intensity
for the designed perfect match probes, low in-
tensity for the corresponding mismatch

Fig. 1. A contaminated D array from the Murine 6500 Af-
fymetrix GeneChipT set. Several particles are highlighted by
arrows and are thought to be torn pieces of the chip cartridge
septum, potentially resulting from repeatedly pipetting the tar-
get into the array.
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probes). RNA samples are prepared according
to the protocol defined by Lockhart [1996], and
then the labeled RNA sample is hybridized to
the corresponding probes on the array. The
array then goes through an automated
staining/washing process using the Affymetrix
fluidics station, and upon completion of this
process, the array is scanned using the Af-
fymetrix confocal laser scanner. The scanner
generates an image of the array by exciting
each feature with its laser, detecting the re-
sulting photon emissions from the fluores-
cently labeled RNA that has hybridized to the
probes in the feature, and converting the de-
tected photon emissions into a 16-bit intensity
value. The images generated by the scanner
are then ready for analysis. We can determine
whether a gene is present and the quantity at
which it is present by examining various sta-
tistics formed from the PM/MM feature inten-
sities. Most of the statistics used are based on
PM/MM differences (e.g., the average differ-
ence intensity and the positive fraction and
positive/negative fraction statistics described
later) and the PM/MM ratio (e.g., the average
log-ratio). When a gene transcript is actually
present, one would expect the PM intensities to
be significantly greater than the MM intensi-
ties, which would be reflected in the PM/MM
differences, ratios and associated statistics.

The GeneChip software supplied by Af-
fymetrix to process array images from the
scanner performs all of the fundamental oper-
ations necessary to analyze an array, including
(1) image segmentation, (2) background correc-
tion, (3) scaling/normalizing arrays for array-
to-array comparisons, (4) calculation of statis-
tics to indicate whether a gene transcript is
present, and (5) calculation of statistics to in-
dicate whether a gene transcript is differen-
tially expressed. As will be detailed by Schadt
et al. [1999], we have developed and imple-
mented our own algorithms for each of the
operations listed above. We will discuss many
of these methods in a less technical manner
throughout the remainder of this article. For a
more detailed description of these methods and
for a more exhaustive comparison of these
methods with currently available ones, refer to
Schadt et al. [1999].

Computing Reliable Feature Intensities

Image Segmentation. In analyzing gene
expression array data generated by the Af-
fymetrix GeneChipt technology, perhaps the
simplest operation to perform is that of seg-
menting the image. The GeneChip software
employs a dynamic gridding algorithm to seg-
ment the image and then uses a percentile
algorithm to compute the feature intensities
once the feature boundaries have been deter-
mined [Lockhart et al., 1996]. We describe, in
Schadt et al. [1999], our own image-processing
algorithm. Employing our own image segmen-
tation algorithm allowed us to directly analyze
the distribution of pixel intensities for a given
feature, devise new algorithms to compute fea-
ture intensities, and directly estimate the blur-
ring effects that can affect probe intensity cal-
culations. The image files generated by the
Affymetrix GeneChipt scanner are 16-bit, bi-
nary image files, with header information pre-
pended as described in the GATC specification
[GATC Consortium, 1998]. Except for anoma-
lous examples (e.g., when the laser in the Af-
fymetrix GeneChipt scanner is not properly
aligned or when the image is extremely bright),
we have found it straightforward to compute
robust feature intensity estimates for a probe
array. Aligning the basic grid to an image to
determine the feature locations is greatly sim-
plified because the arrays contain alignment
features at each corner of the image (these
features can be seen in Fig. 1), which, when

Fig. 2. Hypothetical arrangement of oligonucleotides selected
to interrogate a single gene transcript (top). The perfect match
(PM) and mismatch (MM) probes designed to correspond to a
gene are synthesized in adjacent features (middle of figure). The
intensity plot represents the sort of hybridization intensities we
see for genes that are present at a moderately high abundance
(bottom). Note the functional dependency of the MM intensity
on the PM intensity; further note that, as expected, this func-
tional dependency is not linear with respect to PM intensity.
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used in conjunction with the known feature
sizes, can be used to compute the locations of
each feature.

Once the basic grid has been aligned, we
allow the grid to “deform” at each feature loca-
tion when computing the intensity of the signal
at that location. Toward this end, we have im-
plemented an adaptive pixel selection algo-
rithm. At current scanner resolutions and fea-
ture sizes, a feature generally consists of 64
pixels. For each feature defined in the basic
grid, we first compute its coefficient of varia-
tion (CV), which is a function of the pixel in-
tensities for that feature. Then we remove a
pixel row or column from the feature in order to
attain the greatest reduction in CV, if this re-
duction is judged to be statistically significant.
This process continues until we can no longer
achieve a significant reduction in the CV or
until the modified feature size has been re-
duced to a predefined threshold (typically 16
pixels). After removing outliers, we compute
the modified feature mean and standard devi-
ation using the selected pixels. Data will be
presented in Schadt et al. [1999] to demon-
strate the significant reduction in variation be-
tween replicate samples that is achieved in
using our adaptive pixel selection algorithm,
when compared to the percentile algorithm
that is currently most frequently used.

Background/Gradient Correction. Com-
puting the raw feature intensities represents
only the beginning in obtaining high-quality in-
tensity measurements for each feature. Back-
ground noise correction is instrumental for de-
termining intensities that accurately reflect
the amount of RNA present for each gene on an
array. The GeneChip software corrects for
background variation by segmenting an image
into 16 (by default) squares that cover the en-
tire image. For each block, the lower 2% (by
default) of the feature intensities for that block
are averaged, and this average is subtracted
from each feature in the block. One assumption
implicit in this method is that feature-to-
feature background variation is not significant.
We have found this to be true in many cases,
but then there are many other cases in which
this assumption breaks down. Figure 3 illus-
trates the usefulness of computing a back-
ground intensity value for each feature by an-
alyzing the neighbors of that feature. The
image shown in Figure 3 represents the lower-
right portion of an array covered by four of the

background correcting blocks described above.
The intensity values listed in these blocks were
computed using the Affymetrix algorithm de-
scribed above. Because of the dark scar in the
upper left block, the background intensity for
this block is severely underestimated since the
lower 2% of the feature intensities in this block
are represented by features in the area devoid
of signal. By examining the features surround-
ing a given feature and taking the median of
some number of these surrounding features
(we eliminate the brightest features from con-
sideration since the brightest features are not
generally informative in estimating the back-
ground intensity), the median background for
the features in the rectangular region of the
upper-left block was estimated to be 2,034,
compared to the intensity estimate 803 com-
puted using the GeneChip algorithm. For the
gene in question, this resulted in a fourfold
increase in the average log-ratio for the gene,
which, in general, has a significant impact on
assessing whether a gene is present. This lo-
calized method of background correction also
goes far in reducing intensity gradients/strokes
across an image. As one would expect, back-
ground correction rarely affects the PM/MM
differences.

Artifact Detection. Any number of con-
taminants can cause large numbers of adjacent
features to fluoresce brightly, thus obscuring
the true hybridization intensities for these fea-

Fig. 3. The lower right portion of a C array from the low-
density Murine 6500 Affymetrix GeneChipT set. See the
background/gradient correction section for details on this
image.
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tures (see Fig. 1). Note that some of the arti-
facts in Figure 1 cover from 40 to 1001 fea-
tures (the feature sizes in this image are 50
mm; in the currently available high-density ar-
rays, the feature sizes are 24 mm, which leads
to bigger problems when array debris is
present, since the features have one-fourth the
area). Because this array debris can cover so
many features, the summary statistics com-
puted for the corresponding genes can be
greatly affected, since the true hybridization
signal will be obscured and a false signal will
be given in its place. To extract meaningful
information from these cases, users should
mask the problem areas to prevent the ob-
structed features from being used in the anal-
ysis. While the GeneChip software has a tool
that allows users to manually mask out the
problem features, this process is tedious and
can take several hours for a single array; be-
cause this process is so time consuming, scien-
tists are usually loathe to mask out problem
regions on an array. We have developed a semi-
automated way to mask problem regions on an
array that reduces the time needed to mask
these problem regions. We have developed pro-
totype software that allows users to click on an
image problem region using the mouse, which
invokes a function that recursively connects
neighboring features with similar intensities.
If the ratio of adjacent features (starting with
the feature highlighted by the mouse click) is
within a particular interval (we currently use
the interval [0.70, 1.43]), then those features
are automatically masked; the corresponding
PM (MM) feature is masked when a given fea-

ture is masked. Figure 4 demonstrates this
process. We are currently working on methods
to completely automate the artifact detection
procedure.

Allowing for Array-to-Array Comparisons:
Scaling and Normalization

Scaling and normalization present one of the
greatest challenges in getting the most from
GeneChip data. Unlike the microarray technol-
ogy in which multiple samples are competi-
tively hybridized to an array, each GeneChip
probe array has only a single sample hybrid-
ized to it. Therefore, to compare two or more
arrays, the arrays must be brought into the
same scale, or one array must be normalized
against another. The GeneChip software cur-
rently assumes intensity differences between
two or more arrays are linearly related with a
zero y-intercept. This allows us to define a very
simple and robust normalization factor:

b̂ 5

O
i51

N

~PMi 2 MMi!Chip2

O
i51

N

~PMi 2 MMi!Chip1

,

where N is the number of features on an array.
b̂ is an unbiased estimate of the slope of a
weighted, linear least squares regression.
Therefore, to normalize chip1 against chip2, we
set

~PMi 2 MMi!Chip1
new 5 b~PMi 2 MMi!Chip1

old .

Fig. 4. The feature-level im-
age on the left represents a por-
tion of the pixel-level image
shown in, displayed using our
prototype gene expression soft-
ware prior to masking. We cur-
rently mask at the feature level
because masking at the pixel
level can have undesirable ef-
fects on feature intensity calcu-
lations. Several spot artifacts
are visible in this image (bright
yellow spots of irregular shapes
and sizes). The image on the
right has been masked using the
semiautomated masking tech-
nique described in the text; the
masked spots are highlighted in
blue.
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for all i 5 1..N. Here the superscripts are used
to distinguish the intensity values in chip 1
before and after the normalization. By examin-
ing many arrays, we found this linear method
of normalization to be adequate in many cases,
but in many other cases, the linear relationship
simply does not hold (see Fig. 5). We have
found that the distribution of the low-intensity
signals behave differently than the distribu-
tion of the high-intensity signals; graphs 3, 4,
and 5 in Figure 5 illustrates this point. The
low-intensity/high-intensity distribution dif-
ferences will often yield b estimates in which
the estimate for the low-intensity signals is
10–50% less than or greater than the estimate
for the high-intensity signals. Again, this can
have a significant impact on reliably detecting
differentially expressed genes.

To account for these differences in behavior
across the dynamic range of an array, we apply
change-point detection techniques to deter-
mine at which intensity point the slope of the
linear regression line changes (i.e., where to
define the low-intensity/high-intensity signal
boundary) as we sweep through the dynamic
range of the array. This results in dividing
arrays into two intensity blocks, where a linear
regression can be performed in each block, so
that arrays are normalized one block at a time.

There are several problems in applying this
sort of change-point analysis to obtain a nor-
malization curve, including the fact that the
normalization curve is piece-wise linear, that
is, at the change-point, the normalization curve
is not analytic. To eliminate this problem, we
currently employ a smoothing spline technique

Fig. 5. Five graph representations of four normalization meth-
ods. The x-axis and y-axis for each graph represent the inten-
sities of two arrays, where the intensities on the y-axis are to be
normalized to the intensities on the x-axis. Graph 1 normalizes
the array on the y-axis against the array on the x-axis using an
ordinary least-squares regression, without assuming a zero y-
intercept; the slope of this line (which represents the normal-
ization factor) is given by b 5 0.757, with a statistically signif-
icant positive y-intercept. Graph 2 uses the Affymetrix method
of scaling (ordinary least-squares regression with a zero
y-intercept). The third graph uses the smoothing spline normal-
ization method; note the slight shift in slope between intensities

2,000 and 3,000. The behavior of the spline between intensities
0 and 2,000 is given by graph 4, which is an ordinary least
squares regression on intensities less than 2,000; the behavior
of the spline for intensities . 2,000 is given by graph 5. Note
the difference in slope between graph 4 (b 5 0.818) and graph
5 (b 5 0.716) the slope in graph 5 is 87% the slope of graph 4.
While this change-point is subtle (it represents the typical non-
linear behavior seen between arrays), note that a signal inten-
sity of 5,000 on the y-axis array gets taken to an intensity value
of 4,200 using the GeneChipT normalization method, and to an
intensity value of 3,580 using the smoothing spline normaliza-
tion method.
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[Hastie and Tibshirani, 1997], which is capable
of picking up the slope changes across the dy-
namic range of an array and, simultaneously,
keeping the curve smooth at the various
change-points. This work will be more fully
described in Schadt et al. [1999], but Figure 5
demonstrates the nonlinearity in the expres-
sion signals that can arise.

Finally, it is worth noting that the median
coefficient of variation for probe intensities
over a set of replicate experiments is typically
lowest when smoothing spline normalization is
employed (compared to no normalization and
linear normalization methods). For a set of six
replicate, high-density, Affymetrix Human
6800 GeneChipt arrays generated at RBS for
validation purposes, the median coefficient of
variation (CV) for the probe intensities across
the six replicates was only 7.5%, after normal-
izing five of the six arrays to the sixth using the
smoothing spline method. The corresponding
median CVs for the raw probe intensities (no
normalization) and the probe intensity differ-
ences normalized using the GeneChip software
were 32.3% and 8.9%, respectively.

Interestingly enough, the median CV for the
raw probe intensities was 36.4% after normal-
izing the probe intensity differences using the
GeneChip software. This suggests that normal-
izing on probe intensity differences does noth-
ing to reduce the variation in the raw probe
intensities. We are currently investigating
whether it is best to normalize on the probe
intensity differences or on the raw probe inten-
sities.

ASSESSING GENE PRESENCE AND
DIFFERENTIAL EXPRESSION SIGNIFICANCE

For the gene expression experiments to be
useful, one must be able to assess whether
genes are present or differentially expressed.
The methods Affymetrix employs to determine
whether a gene is present are similar to the
methods used to determine whether a gene is
differentially expressed. Therefore, only the
gene presence calls will be discussed here. As
described by Lockhart et al. [1996], the meth-
ods Affymetrix can employ to determine if a
gene is present or absent depend on a variety of
statistics:

1. PositiveFraction 5 the number of PM/MM
differences that are significantly positive,

where significance is determined by an em-
pirically determined threshold constant.

2. Average Log2Ratio

5

10~O
i51

N log~PMi/MMi!!

N , where N is the

number of probe pairs for the gene and
PMi, and MMi indicate the perfect match
and corresponding mismatch feature in-
tensities, respectively, for feature i.

3.
Positive
Negative 5 the number of PM/MM differ-

ences that are significantly positive divided
by the number that are significantly nega-
tive. As in 1, the significances of the
PM/MM differences are determined by an
empirically determined threshold con-
stant.

These statistics and the associated empiri-
cally determined parameters are used to esti-
mate the parameters of a decision tree, which
is then used to classify genes as present, mar-
ginally present, or absent. The GeneChip soft-
ware associates significances with each classi-
fication, but biologically, they are difficult to
interpret. Furthermore, scientists use these
classifications as a means of filtering genes
(e.g., a scientist may simply exclude all genes
from consideration that were not classified
present). This can turn out to be a rather un-
fortunate mistake as it is often the case that
genes are at the threshold of being detected by
the decision tree, and so, filtering on the cate-
gorical calls for these genes can result in miss-
ing many potentially informative genes. Also,
the default parameters of the decision tree are
estimated and set using data generated inter-
nally at Affymetrix. These parameter esti-
mates are not automatically updated (the pa-
rameters can be changed manually by users) as
users generate significant amounts of data,
and so, the parameter estimates generated by
Affymetrix will not typically coincide with es-
timates that would obtain if all historical data
were taken into account.

To give users of this technology a more
meaningful way to filter data, we propose test-
ing the presence of a gene based on two simple
null hypotheses:

PMi 5
D

MMi and
PMi

MMi
5
D MMi

PMi
for i 5 1..N,
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where N, PMi, and MMi are as defined above,
and the 5 indicates the intensities are equal in
distribution. Because normality assumptions
for probe intensities often do not hold and be-
cause the probe pairs are not necessarily inde-
pendent [Alon et al., 1999], we have developed
a randomization test, which will be described
in more detail in Schadt et al. [1999], in which
the following statistics are computed to empir-
ically estimate the distributions of the PM/MM
differences and the PM/MM ratios:

Sk 5 O
i51

N

~21!Ii~PMi 2 MMi!,

and

Rk 5 O
i51

N S PMi

MMi
D ~21!Ii

,

where Ii is a random indicator function, N is
the number of probe pairs for the gene, and k 5
1..M, where M is the number of permutations
considered. Each of the M sums for Sk and Rk
are then stored in sorted lists, S and R, respec-
tively. Then the sums:

S0 5 O
i51

N

~PMi 2 MMi!,

and

R0 5 O
i51

N S PMi

MMi
D ,

are computed and these values are compared
against the sorted lists. A quantitative mea-
surement of significance is formed by deter-
mining where S0 and R0 would be inserted in
the respective sorted lists and then dividing
the index value at this insert position by the
number of elements in the list. It can be shown
that this measurement of significance for the
PM/MM differences is asymptotic to the
P-value given by the t statistic, when the un-
derlying assumptions for this distribution are
met [Cox and Hinkley, 1979]. The resulting
P-values can then be used to augment the calls
made by the GeneChip software and to quan-
titatively assess the significance of the gene
calls.

Table 1 illustrates the usefulness of the ran-
domization test P-values described above, as
well as the potential danger in filtering genes
based on the GeneChip software categorical
calls. The associated P-values allow a more
quantitative assessment of the presence or ab-
sence of a gene. For example, gene W in this
table demonstrates that the A call in sample
1 has a significant P-value, which is consistent
with the other 3 P calls for the other samples.
The consistency of the other calls and the fact
that these samples are replicates would indi-
cate that the GeneChip software has given a
false negative call for this sample, while the
P-value accurately reflects that the gene is
present. The same sort of randomization test
can be applied in determining whether a gene
is differentially expressed. For differential ex-
pression, the difference of the PM/MM differ-
ences or the log of the ratio of the PM/MM
ratios are the statistics we have found most

TABLE I.

Gene
S1

ADI
S1

CALL S1 PV
S2

ADI
S2

CALL S2 PV
S3

ADI
S3

CALL S3 PV
S4

ADI
S4

CALL S4 PV

W 192.61 A 0.0033 160.75 P 8.77E-05 219.52 P 0.0018 174.32 P 0.0007
X 137.10 P 0.0925 203.21 A 0.1021 145.22 A 0.6661 137.46 A 0.4925
Y 145.42 P 0.0026 131.57 P 0.0017 180.42 P 0.0068 162.29 P 0.0028
Z 26.38 A 0.4776 222.91 A 0.7213 23.69 A 0.4925 36.28 A 0.7773

aFour genes are represented in this table across 4 replicate samples (S1, S2, S3, and S4) hybridized to the Affymetrix Human
6800 High-Density GeneChip™. Each sample has three columns associated with it: 1) ADI gives the average difference
intensity for the gene of interest, 2) CALL gives the GeneChip™ gene presence call for the gene of interest (A for absent, P
for present), and 3) PV is the p-value for the average difference, randomization test described in the text. Gene W is called
A in one of four of the replicate samples, while the p-value is significant for all four samples. Gene X is called A in three of
four of the replicate samples while none of the p-values are significant at the 0.05 significance level. Genes Y and Z are
consistently called P and A, respectively, with consistently significant and non-significant p-values.
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useful in reliably detecting differential expres-
sion. The permutation test does not address
the probe dependency problem, but as probe
sequence data becomes available, we will incor-
porate the dependency structure into these
tests.

ASSESSING PROBE PERFORMANCE

When a gene transcript is actually present in
a target sample hybridized to a probe array,
the intensities of the individual probes corre-
sponding to the transcript can vary greatly,
and these intensity fluctuations are a function
of the hybridization kinetics and nonspecific
RNA hybridizations. Without tracking the per-
formance of these probes, false gene presence
or absence calls, or false differential expression
calls will result. As an example, Figure 6 illus-
trates a gene, Eta-1, and an EST, OPN, from
which probe sets were formed; a set of 20
probes was pulled from the 39 UTR of the Eta-1
gene, and an additional 20 probes were pulled
from the OPN EST, which, at the time the
Affymetrix Generic Murine 6500 array was de-
signed, was not known to belong to the trans-
lated region of the Eta-1 gene. Figure 7 shows
the hybridization results of the Eta-1 gene and
the OPN EST in untreated and treated sam-

ples. Neither probe set detected the presence of
the corresponding sequence in the untreated
case (both array regions shown for the un-
treated sample are from the same array, as are
the regions shown for the treated sample),
however, in the treated case, the Eta-1 gene
was detected as present, but the OPN EST was
not detected as present. Such conflicting re-
sults for gene transcripts represented on a sin-
gle array multiple times is not uncommon, and
data from our experiments indicate that when
a gene transcript is present, PM probes from a
given probe set for the gene are more likely to
light up, when compared to PM probes from a
more 59 probe set for the same gene. This bias
demands that we weight the 39 probes more
heavily with respect to their ability to indicate
gene presence, while placing less weight on
probes that are more 59. The presence of the
Eta-1 gene in the treated sample was con-
firmed by kinetic PCR (data not shown).

As indicated by Alon et al. [1999], the probe
sequences in neighboring features can contain
common sequence. Our understanding of the
Affymetrix probe selection process is that
probe sequences are picked from a given gene
sequence after eliminating palindromic subse-
quences, Alu subsequences, and other subse-

Fig. 6. Probes from Eta-1 (a
full-length gene) and OPN (an
EST within Eta-1) were inde-
pendently selected from the
corresponding sequences illus-
trated here. Note that GenBank
was updated after the design of
the corresponding probe array,
to reflect that OPN is actually
part of the Eta-1 gene. The
white indicates the full-length
gene sequence for the Eta-1
gene, the red indicates the cod-
ing sequence for the Eta-1 gene,
and the yellow indicates the se-
quence for the OPN EST.
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quences that are homologous to other gene se-
quences, among a host of other exclusion
criteria aimed at making the hybridization
characteristics of a probe relatively uniform.
Under such circumstances, it is not always pos-
sible to pick probes that are do not contain
common sequence or that have hybridization
characteristics that are similar to the “ideal”
probe. Therefore, it is imperative that the com-
mon sequence structure and hybridization
characteristics be accounted for in computing
average intensity statistics and in determining
whether a gene transcript is present or differ-
entially expressed.

Current protocols do not call for high tem-
perature hybridizations, and so, variations in
the melting temperature can have a significant
impact on the PM/MM differences, which, in
turn, can greatly impact gene presence or dif-
ferential expression detection. If the melting
temperature is too high, relative to the exper-
imental protocols defined by Affymetrix (these
protocols call for carrying out the hybridization
for 16 h at 45°C in a rotisserie oven set at
60 RPM), then the PM as well as the corre-
sponding MM features will bind the RNA
tightly, thus giving small PM/MM differences,
which could severely bias gene presence and
differential expression calls. Other serious vari-
ations we have seen with respect to hybridiza-
tion efficiencies include arrays that have a
brighter median probe intensity (over the en-

tire array) than a baseline array, but which
have PM/MM differences that are less than the
differences of the baseline array. This would
seem to indicate that the intensity signals for
the PM features of the “bright” array are sat-
urated, and that the intensity signals for the
corresponding MM features are boosted, giving
lower PM/MM differences.

If a significant number of PM features are
reaching this saturation point, the data on the
array are completely unreliable. In fact, this
can lead to very misleading results, since when
the arrays are compared, if normalization
takes place on the PM/MM differences, genes
that are actually up-regulated in the “bright”
array may be called down-regulated. Similarly,
genes that are actually present in the “bright”
array may be called absent. We currently ex-
amine PM/MM differences as well as PM/MM
sums, since information lost in the PM/MM
difference may be partially recovered using
both statistics.

The probe sequences contain a plethora of
information that could be used to enhance cur-
rent gene expression and differential expres-
sion detection algorithms. For instance, knowl-
edge of the probe sequences would allow the
hybridization efficiency (and hence, the quality
of the probe) to be assessed based on the
probe’s position in the gene sequence, on its GC
content, on its GC trend, or on any other at-
tribute of the probe sequence that would be

Fig. 7. The OPN and Eta-1 probe sets
on the Affymetrix Murine 6500 Gene-
ChipT array. The 20 probe pairs repre-
senting the OPN and Eta-1 sequences
are outlined in white. The top row
(OPN) indicates no detectable expres-
sion of the OPN EST in the untreated
(control) and treated (bleomycin) sam-
ples. The bottom row (Eta-1) indicates
no detectable expression of Eta-1 in
the untreated sample but definite ex-
pression in the treated sample. The un-
treated data shown for OPN and Eta-1
are from the same array hybridization,
as are the treated data. As shown in
Figure 6, OPN and Eta-1 represent the
same gene. The probes for Eta-1 were
pulled from the 39 UTR of the gene,
while the OPN probes were pulled
from the coding region of the gene (the
area highlighted in yellow in Fig. 6).
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highly predictive of its ability to efficiently hy-
bridize (this would include things like alterna-
tive splicing, SNPs, etc.) Current systems do
not provide for any sort of quality score for the
probes on an array (i.e., past arrays are not
used to assess performance of probes in future
experiments). We strongly believe such a scor-
ing system for the probes would greatly im-
prove gene detection algorithms and the ability
to quantify levels of a gene transcript when a
gene transcript is actually present.

CONCLUSION

The various methods discussed in this article
go further than currently available methods in
accounting for many of the sources of variation
that can obscure the very biological variation the
technology aims to detect. Clearly, there is much
further to go in analyzing gene expression array
data. Sophisticated background/gradient correc-
tion methods, scaling/normalization methods,
methods to assess a probe’s hybridization effi-
ciency, and methods to detect gene presence or
differential expression, only begin to approach
the goal of extracting as much information as
possible from these data. Power analysis, intro-
ducing orthogonal biological factors to increase
the information content of these data, and build-
ing on the current clustering techniques used
to explore gene expression data [Eisen, 1998;
Tamayo, 1999], will all be necessary to get the
most from this technology. Furthermore, as ex-
pression libraries become widely available, we
will be able to estimate the variation struc-
tures of genes in a variety of tissue and across
many different organisms, which will result in
more informative differential expression anal-
yses. Making better use of the currently avail-
able sequence information will enhance probe
selection algorithms, thus increasing the effi-
ciency of the probes and better accounting for
the many complicated biological phenomena
(e.g., alternative splice sites) that are currently
not well understood. Of course, these issues
represent only the computational aspects of
this technology and do not even begin to ad-
dress the sort of informatics infrastructure nec-
essary to intelligently store and mine this type
of expression data, which, at RBS, has already
hit the terabyte scale.

The ability to simultaneously monitor tens of
thousands of genes across a series of experi-
ments is truly a great technology breakthrough
for the biomedical and life sciences. However,
these types of high-throughput assays gener-
ate data that require sophisticated computa-
tional and statistical techniques for their anal-
ysis. By spending the time to develop such
methods up front, we believe the better quality
data that result, will make it possible to detect
many of the more subtle gene expression pat-
terns and gene interactions that give rise to all
of the complexities of living systems.

ACKNOWLEDGMENTS

We thank Renu Heller, Gary Peltz, John Al-
lard, Fengrong Zuo, Andrew Grupe, and Dee
Aud of Roche Bioscience for providing us with
the gene expression array data.

REFERENCES

Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack
D, Levine AJ. 1999. Broad patterns of gene expression
revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays. Proc Natl
Acad Sci USA 96:6745–6750.

Cox DR, Hinkley DV. 1979. Theoretical statistics. London:
Chapman and Hall.

Der SD, Zhou A, Williams BRG, Silverman RH. 1998.
Identification of genes differentially regulated by inter-
feron a, b, or g using oligonucleotide arrays. Proc Natl
Acad Sci USA 95:15623–15628.

Eisen MB, Spellman PT, Brown PO, Botstein D. 1998.
Cluster analysis and display of genome-wide expression
patterns. Proc Natl Acad Sci USA 95:14863–14868.

Eisenberg DS, Crothers DM. 1979. Physical chemistry:
with applications to the life sciences. Menlo Park, CA:
Benjamin/Cummings Publishing Company.

GATC Consortium. 1998. GATC Specifications: Software
Specifications. Available at http://www.gatconsortium.org/.

Hastie TJ, Tibshirani RJ. 1997. Generalized additive mod-
els. New York: Chapman and Hall.

Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallow
MV, Chee MS, et al. 1996. Expression monitoring by
hyrbridization to high-density oligonucleotide arrays.
Nature Biotechnol 14:1675–1680.

Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S,
Dmitrovsky E, Lander ES, Golub TR. 1999. Interpreting
patterns of gene expression with self-organizing maps:
methods and application to hematopoietic differentia-
tion. Proc Natl Acad Sci USA 96:2907–2912.

Wodicka L, Dong H, Mittmann M, Ho MH, Lockhart DJ.
1997. Genome-wide expression monitoring in Saccharo-
myces cerevisiae. Nature Biotechnol 5:1359–1366.

202 Schadt et al.


	OVERVIEW OF THE OLIGONUCLEOTIDE EXPRESSION ARRAY TECHNOLOGY
	Fig. 1.
	Fig.2.
	Fig. 3.
	Fig. 4.
	Fig. 5.

	ASSESSING GENE PRESENCE AND DIFFERENTIAL EXPRESSION SIGNIFICANCE
	TABLE I.
	Fig. 6.

	ASSESSING PROBE PERFORMANCE
	Fig.7.

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

